ANALYSIS OF SOME IMPORTANT FIRST-ORDER REACTIONS

Section - 3

Analysis of some important first-order reactions:

1. Decomposition of Hydrogen peroxide (H2O2)

$$2 \operatorname{H}_2 \operatorname{O}_2(\ell) \longrightarrow 2 \operatorname{H}_2 \operatorname{O}(\ell) + \operatorname{O}_2(g)$$

The rate of this first order reaction is measured by titrating a fixed volume of H_2O_2 (undecomposed) against a standard solution of KMnO₄. Here KMnO₄ acts as *oxidising agent* and H_2O_2 as *reducing agent*. The volumes of KMnO₄ used for H_2O_2 after regular intervals of time are as follows.

Time instants	t = 0	t ₁	t_2	t_3	t ₄	t ₅
Vol. of KMnO ₄	V_0	V_1	V_2	V_3	V_4	V_5

Volume of KMnO₄ at t = 0 corresponds to volume of H₂O₂ initially present \Rightarrow C₀ \propto V₀

Volume of KMnO₄ at time instants t_1, t_2, t_3, \ldots corresponds to volume of H_2O_2 remaining after $t_1, t_2, t_3, \ldots \Rightarrow C_t \propto V_t$ Now it being a first order reaction, follows first order kinetics: $kt = 2.303 \log_{10} \frac{V_0}{V_t}$

Now using the above expression, if we calculate the values of k for different time intervals t_1 , t_2 , ... (for actual numerical data), the values of k should be same if the reaction follows first order kinetics.

2. Decomposition of ammonium nitrite (NH₄NO₂) and benzene diazonium chloride (C₆H₅N=NCI)

$$NH_4NO_2(s) \longrightarrow 2H_2O(\ell) + N_2(g)$$

$$C_6H_5-N=N-Cl(\ell) \longrightarrow C_6H_5-Cl(\ell) + N_2(g)$$

The rate of both the reaction is studied (measured) in similar manner. The volume of nitrogen (N_2) is collected after a regular interval of time as follows:

Time instants	t = 0	t ₁	t_2	t_3	t ₄	t
Vol. of N ₂	0	V_1	V_2	V_3	V_4	V_{t}

At t = 0, clearly the volume of $N_2 = 0$

Time instant $t = \infty$ means the end of a reaction i.e., when whole of NH_4NO_2 or $C_6H_5 - N = N - Cl$ is decomposed.

 \Rightarrow At $t = \infty$, V_{∞} corresponds to the initial volume of NH_4NO_2 or $C_6H_5 - N = N - Cl$.

(Note that the ratio of stoichiometric coefficient for both N_2 : NH_4NO_2 or N_2 : $C_6H_5N = NCl$ is 1:1).

$$\Rightarrow$$
 $C_0 \propto V_{\infty}$

At $t = t_1, t_2, t_3, \dots$, the volume of N_2 corresponds to concentration of product formed i.e., equal to x.

$$\Rightarrow \qquad x \, \propto \, \mathbf{V}_{\mathsf{t}} \qquad \Rightarrow \qquad \mathbf{C}_{0} - x \, \propto \, \mathbf{V}_{\infty} - \mathbf{V}_{\mathsf{t}}$$

$$\Rightarrow kt = 2.303 \log_{10} \frac{V_{\infty}}{V_{\infty} - V_{t}}$$

3. Hydrolysis of esters (CH₃COOC₂H₅)

$$CH_3COOC_2H_5$$
 (ester) + H_2O + $HCl(H^+)$ \longrightarrow CH_3COOH + C_2H_5OH

The reaction rate is measured by titrating the acid (CH_3COOH) produced against a standard alkali solution. Note that when a test sample is prepared from the reacting mixture, there are two acids: one is mineral acid H^+ (HCl or any other) and second is CH_3COOH produced. So volume of alkali used gives titration value for both acids. The data is collected in the following manner.

Time instants	t = 0	t ₁	t_2	t_3	t ₄	t _∞
Vol. of NaOH	V_0	V_1	V_2	V_3	V_4	V_{∞}

At t = 0, V_0 is the volume NaOH used to neutralise the mineral acid present (H⁺) being used as catalyst. (At t = 0, no CH₃COOH is yet produced)

At $t = \infty$ (i.e. at the end of hydrolysis), V_{∞} is the volume of NaOH used to neutralise whole of CH_3COOH plus vol. of HCl present. At $t = \infty$, volume of CH_3COOH corresponds to volume of ester taken initially.

$$\Rightarrow$$
 $C_0 \propto V_{\infty} - V_0$ (as $V_0 \equiv \text{vol. of HCl}$)

At $t = t_1, t_2, t_3, \ldots, V_1, V_2, V_3, \ldots$ corresponds to vol. of HCl *plus* vol. of CH₃COOH being produced.

$$\Rightarrow$$
 $x \propto V_t - V_0$

$$\Rightarrow \qquad C_0 - x \propto (V_{\infty} - V_0) - (V_t - V_0) \qquad \Rightarrow \qquad C_0 - x \propto V_{\infty} - V_t$$

$$\Rightarrow kt = 2.303 \log_{10} \frac{V_{\infty} - V_0}{V_{\infty} - V_t}$$

4. Kinetics of some reactions can be studied by measuring optical rotation of reaction mixture at different interval of time.

(i) Inversion of Cane Sugar (C₁₂H₂₂O₁₁)

$$C_{12}H_{22}O_{11} + H_2O + H^+ \longrightarrow C_6H_{12}O_6 \text{ (glucose)} + C_6H_{12}O_6 \text{ (fructose)}$$

The rate is measured by measuring the change in the angle of rotation (optical activity) by a polarimeter. Sucrose is *dextro-rotatory*, glucose is *dextro-rotatory* and fructose is *leavo-rotatory*. The change produced in rotatory power in time t gives a measure of x, the quantity of sucrose decomposed in that time. The total change in the rotatory power produced at the end of the reaction gives the measure of C_0 , the initial concentration of sucrose.

If r_0 , r_t and r_{∞} represent rotations at the start of reaction, after time t and at the end of reaction respectively, then

$$\Rightarrow \qquad \mathsf{C}_0 \, \bowtie \, \mathsf{r}_0 \, - \, \mathsf{r}_\infty$$

and
$$x \propto r_0 - r_t$$

$$\Rightarrow \qquad \mathsf{C}_0 - x \, \propto \, \, \mathsf{r_t} \, \, - \, \mathsf{r}_{_{\infty}}$$

$$\Rightarrow kt = 2.303 \log_{10} \frac{r_0 - r_{\infty}}{r_t - r_{\infty}}$$

(ii) Consider the following first order reaction in which A, B and C are optically active compounds which rotate the plane polarized light in the clockwise or anticlockwise direction.

$$A (soln.) \longrightarrow B (soln.) + C (soln.)$$

Time	0	t	∞
Total rotation in degrees	r_0	$r_{\rm t}$	r_{∞}

Let the specific optical rotations of A, B and C per unit concentration be, r_a , r_b and r_c (including +ve or -ve sign). Let the initial concentration of A be C_0 and the decrease in concentration till time t be x.

$$A (soln.) \longrightarrow B (soln.) + C (soln.)$$

At time = 0

At time = t

 $\begin{array}{cccc}
C_0 - x & x & x \\
0 & C_0 & C_0
\end{array}$

At time = ∞

Such that
$$k = \frac{1}{t} \ln \frac{C_0}{C_0 - x}$$

Optical rotation at time = 0,

 $r_{a} C_{0} = r_{0}$

 \dots (i)

Optical rotation at time = t,

 $r_a (C_0 - x) + x r_b + x r_c = r_t$

$$r_a C_0 + x (r_b + r_c - r_a) = r_t$$

 $r_0 + x (r_b + r_c - r_a) = r_t$

....(ii)

Optical rotation at time = ∞ ,

....(iii)

From equation (ii)

$$x = \frac{\mathbf{r_t} - \mathbf{r_0}}{\left(\mathbf{r_b} + \mathbf{r_c} - \mathbf{r_a}\right)} \qquad \qquad \dots (\mathbf{iv})$$

Since constant involved in x is $\frac{1}{(r_b + r_c - r_a)}$, the same constant must appear in the expression of C_0 .

Thus, subtracting equation (i) from equation (iv), we get:

$$C_0 = \frac{r_{\infty} - r_0}{\left(r_b + r_c - r_a\right)} \qquad \dots (v)$$

Subtracting equation (iv) from equation (v)

$$C_0 - x = \frac{r_{\infty} - r_t}{(r_b + r_c - r_a)}$$

$$\therefore \qquad k = \frac{1}{t} \ln \frac{r_{\infty} - r_0}{r_{\infty} - r_t}$$

5. In first-order reactions involving gases, sometime measuring the pressure of the reaction mixture is very good method for measuring reaction rates.

For example consider decomposition of arsine gas (AsH₂).

$$AsH_3(g) \longrightarrow As(s) + \frac{3}{2}H_2(g)$$

The rate of reaction is measured as the *increase* in pressure of the reaction mixture. Note that there is an increase in number of moles of the gaseous products to the right, so as the reaction proceeds, there will be an increase in pressure of contents $(P \propto n)$.

Let the initial pressure of $AsH_3(g)$ is P_0 , if x is the decrease in pressure of $AsH_3(g)$ after time t.

Arsenic is solid, so P(As) = 0

After time t, let P, be the total pressure, then

$$P_t = P(AsH_3) + P(H_2) = (P_0 - x) + \frac{3x}{2}$$

$$\Rightarrow \qquad P_{t} = P_{0} + \frac{x}{2} \qquad \Rightarrow \qquad x = 2 (P_{t} - P_{0})$$

Now $C_0 \propto P_0$

and
$$C_t \propto P_0 - x \equiv P_0 - 2(P_t - P_0) \equiv 3P_0 - 2P_t$$
 \Rightarrow $kt = 2.303 \log_{10} \frac{P_0}{3P_0 - 2P_t}$

On similar pattern, please try to write the expression for 1st order rate law for following first-order reactions. (in terms of P_0 and P_1)

1.
$$N_2O(g) \longrightarrow N_2(g) + \frac{1}{2} O_2(g)$$

2.
$$(CH_3)_3C - O - O - C(CH_3)_3(g) \longrightarrow 2(CH_3)_2C = O(g) + C_2H_6(g)$$